AGF-301 The Upper Polar Atmosphere (15 ECTS)

Aurora borealis, Svalbard

Apply here

ID:
AGF-301
CREDITS:
15 ECTS
START DATE:
8 January 2018
END DATE:
8 May 2018
COURSE PERIOD:
Spring semester (January–May), annually.
LANGUAGE OF INSTRUCTION AND EXAMINATION:
English
CREDIT REDUCTION/OVERLAP:
15 ECTS with AGF-801
GRADE:
Letter grade (A through F)
COURSE MATERIAL:
Book chapters, articles, compendia; ca. 450 pages
COURSE COSTS:
None
COURSE CAPACITY MIN/MAX:
8/16 students (AGF-301/801 in total)
EXAMINATION SUPPORT MATERIAL:
Bilingual dictionary between English and mother tongue. Non-programmable calculator
APPLICATION DEADLINE:
15 October 2017

Course requirements:

Enrolment in a relevant master programme in geophysics. General knowledge of basic atmospheric physics and/or electrodynamics.

Academic content:

This course describes the interactions between the solar wind and the Earth’s magnetosphere and the consequences of these processes for the ionized region of the upper atmosphere, i.e. the ionosphere. Energy, particles and momentum transferred from the solar wind manifest themselves in the upper Polar atmosphere particularly as the aurora, but also in terms of powerful electric currents and wind systems (ion winds as well as winds in the neutral gas).

Central elements in this course will be descriptions of the Earth’s magnetic field, the magnetosphere, ionization processes and the formation of the ionosphere. The current system related to the coupling between the magnetosphere and the upper atmosphere/ionosphere, together with the generation and absorption mechanisms for waveforms and transport of electromagnetic energy will be described. Both particle and magneto-hydrodynamic descriptions of space plasma will be presented.

Data from instrumentation at the Kjell Henriksen Observatory together with data from other ground-based instruments at different locations as well as satellite data will be used to analyse auroral emissions and current systems in order to understand how solar wind energy interacts with the upper polar atmosphere.

Students are recommended to take AGF-301 in parallel with AGF-304 Radar Diagnostics of Space Plasma.

Learning outcomes:

Knowledge
Upon completing the course, the students will be able to:

  • Describe how the energy from the solar wind is deposited in the Earth’s magnetosphere/ionosphere system, and how this is related to physical processes observable from satellite and ground-based instrumentation.
  • Understand the difference in the type of measurements made by various optical instruments.

Skills
Upon completing the course, the students will be able to:

  • Operate several optical instruments located at the Kjell Henriksen Observatory (KHO); these instruments include a Meridian Scanning Photometer, Ebert Fastie Spectrometers and All Sky Cameras. Absolute-calibrate optical instrumentation.

General competences
Upon completing the course, the students will be able to:

  • Analyse and evaluate space physics data, and relate the outcome to physical processes in the ionosphere.
  • Understand what type of information that can be extracted from different types of optical instrumentation.

Learning activities:

The course extends over a full semester and is run in combination with AGF-801. Initially, students attend one week of compulsory Arctic survival and safety training (AS-101).

The course starts with a combination of lectures and seminars to build a theoretical base. To train skills in operating and calibrating relevant optical instruments, students attend practical classes and perform fieldwork at Kjell Henriksen Observatory during evening hours. Students develop an ability to analyse and evaluate space physics data by producing a project report. The report will thematically be connected to the fieldwork at KHO.

Total lecture hours: 65 hours.
Total seminar hours: 20 hours.
Fieldwork: 30 hours.

Compulsory learning activities:

Fieldwork and written report. 
All compulsory learning activities must be approved in order to sit the exam.

Assessment:

Method Duration
Percentage of final grade
Written exam 5 hours 100%

All assessments must be passed in order to pass the course.

 

Application deadline: 15 October 2017

Aurora seen from the Kjell Henriksen Observatory. Photo: UNIS.

Print Friendly, PDF & Email

CONTACT INFO

The University Centre in Svalbard
Telephone: +47 79 02 33 00
Fax: +47 79 02 33 01
E-mail: post@unis.no / webmaster@unis.no
Address: P.O. Box 156 N-9171 Longyearbyen
Org. no. 985 204 454

Sitemap

UNIS logo

Slogan

Research-based education of the next generation of Arctic experts

TOP