AG-836 Rift Basin Reservoirs: From Outcrop to Model (10 ECTS)

Apply here

4 September 2017
3 October 2017
Autumn semester (September–October), annually.
10 ECTS overlap with AG-336
Letter grade (A through F)
Articles, (ca. 400 pages), hand-outs
Fieldwork, NOK 1600–2000 (8–10 days x NOK 200 per overnight stay)
10/20 students (AG-336/836 in total)
Bilingual dictionary between English and mother tongue
15 April 2017


Kim Senger
Kim Senger
Associate Professor, Structural geology and basin analysis

Course requirements:

Enrolment in a relevant PhD programme. General background in structural geology and sedimentology. Previous geological field experience is required.

Academic content:

Rift basins are among the most common hydrocarbon and groundwater plays, and thus important to society. Successful exploration and production in rift basins requires a sound understanding of their three-dimensional architecture and their geological evolution through time. Emphasis is put on how extensional basin architecture develops as a function of fault growth and linkage and how sedimentary systems respond to the topographic gradients produced by faults. Thus, the effects of faulting on sedimentation are central topics. Furthermore, we focus on the effect of faulting on reservoir properties, on acquisition and compilation of outcrop data, on seismic expressions of rift basins, and on the use of geological information in reservoir models.

Learning outcomes:

Upon completing the course, the students will:
Have a broad knowledge of the structural and sedimentary architecture of rift basins and their assessment from a petroleum perspective. Have obtained insight in a number of fundamental basin-forming processes, in particular structural evolution and the evolution of tectonic geomorphology and depositional patterns characteristic for extending areas. Acquire a fundamental understanding for different types of rift basins, their evolutionary stages and resulting configuration of sedimentary rocks. Be able to translate this knowledge into scenarios for petroleum exploration, including reservoir characteristics and risk evaluation. Have detailed knowledge of an onshore analogue to the deep rift basins of the Barents Sea.

Upon completing the course, the student will:
Be able to measure and analyse tectonic and sedimentary structures in the field, and to construct detailed logs through successions of sedimentary rocks. Be able to use different types of geological data (structural, sedimentological) to reconstruct the architecture and the general tectonic and depositional history of a rift basin. Have been introduced to the interpretation of rift basins in seismic reflection data. Be able to translate the geology of a rift basin into a series of petroleum exploration plays and to have evaluated these plays in terms of potential resources and risks.

General competences
Upon completing the course, the students will have:
Fundamental competence in the design and execution of an independent field-based research project, including compilation of literature and the planning and execution of field activities. Experienced the challenges of team work involving mixed geological backgrounds and skills. Strengthened their ability to think across disciplines and to implement cross-disciplinary concepts in a team-based workflow.

Learning activities:

The course extends over ca. 4 weeks in combination with AG-336.

We use world-class exposures in Svalbard to illustrate the architecture and processes of rift basins. In the series of lectures and exercises, rift basins are placed in the context of evolutionary models for extensional systems and rifted margins. The students will prepare in terms of a pre-course assignment that will be presented during the course. The introductory lessons will be followed by field studies in the Billefjorden Trough, an excellently exposed rift basin in Svalbard. This Carboniferous half-graben hosts marginal sandstones as well as carbonates, evaporites and shales. Several types of source-and reservoir rocks will be explored. The participants will work in teams to record outcrop data and develop their own case study of a rift-basin reservoir. The Arctic climate and the variable topography in the field area require that students are fit and equipped to face the environment.

The fieldwork will be followed by compilation and evaluation of surface and subsurface data. Finally, the students will use their own field observations to evaluate play models in a written report and presentation that will be graded together with their performance in the field.

Total lecture and exercise hours: Ca. 40 hours.
Excursion and fieldwork: Ca. 8-10 days.

Compulsory learning activities:

Fieldwork, exercises, presentations, report.
All compulsory learning activities must be approved in order to sit the exam.


Method Duration
Percentage of final grade
Pre-course assignment, oral presentation 20%
Graded report, oral presentation 30%
Written exam 3 hours 50%

All assessments must be passed in order to pass the course.
Only the final grade will be reported, based on an average of the grades from the examination parts.


Application deadline: 15 April 2017



The University Centre in Svalbard
Telephone: +47 79 02 33 00
Fax: +47 79 02 33 01
E-mail: /
Address: P.O. Box 156 N-9171 Longyearbyen
Org. no. 985 204 454


UNIS logo


Research-based education of the next generation of Arctic experts