AG-349 Geological Constraints on CO<sub>2</sub> Storage (5 ECTS)

Carboniferous and devon (red) rocks in Billefjorden. Photo: Snorre Olaussen/UNIS

Apply here

ID:
AG-349
CREDITS:
5 ECTS
START DATE:
19 June 2017
END DATE:
5 July 2017
COURSE PERIOD:
Summer/autumn semester (June–July), annually
LANGUAGE OF INSTRUCTION AND EXAMINATION:
English
CREDIT REDUCTION/OVERLAP:
5 ECTS with AG-849, AG-341/841
GRADE:
Letter grade (A through F)
COURSE MATERIAL:
Articles, book chapters and compendia, ca. 150 pages.
COURSE COSTS:
Fieldwork, ca. NOK 600 (3 days x NOK 200 per overnight stay)
COURSE CAPACITY MIN/MAX:
10/20 students (AG-349/849 in total)
EXAMINATION SUPPORT MATERIAL:
Bilingual dictionary between English and mother tongue
APPLICATION DEADLINE:
As soon as possible

INSTRUCTORS:

Helge Hellevang
Helge Hellevang
Adjunct Associate Professor, Geochemistry
Snorre Olaussen
Snorre Olaussen
Professor in Arctic Petroleum Geology

Course requirements:

Enrolment in a master programme in geology and documented relevant field experience.

Academic content:

With large capacity to store CO2 off-shore, Norway has an important role for the implementation of CCS on large scale in Europe. The off-shore storage capacity has recently been mapped by NPD and published in the Norwegian CO2 storage atlases. One Atlas has been devoted to mapping storage capacity in the Barents Sea shelf. Possible storage reservoirs in the Barents Sea have undergone a complex story of burial and uplift, and many candidates are of limited extent, tight, fractured and with sealing or leaking faults.

Svalbard offers a 3D window into the Barents Sea reservoirs and provides excellent field sites for studying the typical Barents Sea carbonate and siliciclastic reservoir and seal rocks.

Learning outcomes:

Students will get an introduction to the Longyearbyen CO2 storage laboratory and an overview of the regional and local Svalbard geology. This includes large-scale tectonics, main structural elements, and carbonate and siliciclastic sedimentology. The students will then get an introduction (update) to field geology and field methods. The main part of the course will be field excursions at various locations in the Billefjorden area and Deltaneset, studying structural elements and CO2 reservoir/seal characteristics. The students will finally learn work with printed maps and Petrel to assess the storage capacity of selected Barents Sea reservoirs.

The course can be taken as a part of a two-course package, starting with GEO5912 (8 ECTS) at UiO, providing an introduction to CCS at a guest stay at Colorado School of Mines (USA) 29 May–4 June 2017, before learning the theoretical framework needed to estimate CO2 storage capacity at UiO (tentative time 9–15 June 2017). Those attending both GEO5912 and AG-349 will have the opportunity to get a scholarship covering a return travel Norway–USA, and accommodation. There will be a maximum of 20 scholarships available.

Knowledge
Upon completing the course, the students will have knowledge of:

  • How to assess reservoir-seal quality from field observations
  • Factors to consider when assessing the CO2 storage potentials in the Barents Sea and Svalbard
  • Challenges of CO2 storage in deeply buried and fractured rocks

Skills
Upon completing the course, the students should be capable of:

  • Understanding the main features of the Svalbard and Barents sea geology in a CCS perspective
  • Evaluating the reservoir-seal system from regional and local maps and field observations

General competences
Upon completing the course, the students will have learned:

  • How to assess the quality of reservoir and seal rocks from field observations
  • How to prepare a field report
  • How to work in a team/group
  • How to present the work as a part of a team

Learning activities:

The course extends over two weeks and is run in combination with AG-849.

Class room lectures:
Introduction to Longyearbyen CO2 laboratory and local/regional geology
Field geology, methods and practicals
How to use maps and Petrel to assess CO2 storage capacity

Fieldwork:
Reservoir-seal system carbonate and siliciclastic reservoirs (structural elements, reservoir quality, local-regional extent of reservoir).

Laboratory work:
Computer exercises using Petrel to assess storage capacity of selected reservoir-seal systems.

Group work:
Students will work in groups to solve specific topics to be decided on, and each student will build on this for their individual final reports.

Total lecture hours: 11 hours.
Total seminar hours: 8 hours.
Total exercise hours: 6 hours.
Total post-course work: 20 hours.
Field excursions: 4 days.

Compulsory learning activities:

All excursions and fieldwork.
All compulsory learning activities must be approved in order to sit the exam.

Assessment:

Method Percentage of final grade
Group presentations related to fieldwork 20 %
Written report 80 %

All assessments must be passed in order to pass the course.
Only the final grade will be reported, based on the weighted average of the grades from the examination parts.

 

Application deadline: As soon as possible

To apply, send an e-mail to study@unis.no stating which UNIS course(s) you would like to apply for, and which study programme you are enrolled in at your home university for spring 2017. We will then ask for more documentation if needed.

CONTACT INFO

The University Centre in Svalbard
Telephone: +47 79 02 33 00
Fax: +47 79 02 33 01
E-mail: post@unis.no / webmaster@unis.no
Address: P.O. Box 156 N-9171 Longyearbyen
Org. no. 985 204 454

Sitemap

UNIS logo

Slogan

Research-based education of the next generation of Arctic experts

TOP